Scenarios of giant planet formation and evolution and their impact on the formation of habitable terrestrial planets.

نویسنده

  • Alessandro Morbidelli
چکیده

In our Solar System, there is a clear divide between the terrestrial and giant planets. These two categories of planets formed and evolved separately, almost in isolation from each other. This was possible because Jupiter avoided migrating into the inner Solar System, most probably due to the presence of Saturn, and never acquired a large-eccentricity orbit, even during the phase of orbital instability that the giant planets most likely experienced. Thus, the Earth formed on a time scale of several tens of millions of years, by collision of Moon- to Mars-mass planetary embryos, in a gas-free and volatile-depleted environment. We do not expect, however, that this clear cleavage between the giant and terrestrial planets is generic. In many extrasolar planetary systems discovered to date, the giant planets migrated into the vicinity of the parent star and/or acquired eccentric orbits. In this way, the evolution and destiny of the giant and terrestrial planets become intimately linked. This paper discusses several evolutionary patterns for the giant planets, with an emphasis on the consequences for the formation and survival of habitable terrestrial planets. The conclusion is that we should not expect Earth-like planets to be typical in terms of physical and orbital properties and accretion history. Most habitable worlds are probably different, exotic worlds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Habitable Planet Formation in Extreme Planetary Systems: Systems with Multiple Stars and/or Multiple Planets

Understanding the formation and dynamical evolution of habitable planets in extrasolar planetary systems is a challenging task. In this respect, systems with multiple giant planets and/or multiple stars present special complications. The formation of habitable planets in these environments is strongly affected by the dynamics of their giant planets and/or their stellar companions. These objects...

متن کامل

The Search for Other Earths: Limits on the Giant Planet Orbits That Allow Habitable Terrestrial Planets to Form

Gas giant planets are far easier than terrestrial planets to detect around other stars, and are thought to form much more quickly than terrestrial planets. Thus, in systems with giant planets, the late stages of terrestrial planet formation are strongly affected by the giant planets’ dynamical presence. Observations of giant planet orbits may therefore constrain the systems that can harbor pote...

متن کامل

On the formation of terrestrial planets in hot–Jupiter systems

Context. There are numerous extrasolar giant planets which orbit close to their central stars. These ‘hot-Jupiters’ probably formed in the outer, cooler regions of their protoplanetary disks, and migrated inward to ∼ 0.1 AU. Since these giant planets must have migrated through their inner systems at an early time, it is uncertain whether they could have formed or retained terrestrial planets. A...

متن کامل

Influence of massive planet scattering on nascent terrestrial planets

In most extrasolar planetary systems, the present orbits of known giant planets admit the existence of stable terrestrial planets. Those same giant planets, however, have typically eccentric orbits that hint at violent early dynamics less benign for low mass planet formation. Under the assumption that massive planet eccentricities are the end point of gravitational scattering in multiple planet...

متن کامل

Habitable Planet Formation in Binary-Planetary Systems

Recent radial velocity observations have indicated that Jovian-type planets can exist in moderately close binary star systems. Numerical simulations of the dynamical stability of terrestrial-class planets in such environments have shown that, in addition to their giant planets, these systems can also harbor Earth-like objects. In this paper, we study the late stage of terrestrial planet formati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Philosophical transactions. Series A, Mathematical, physical, and engineering sciences

دوره 372 2014  شماره 

صفحات  -

تاریخ انتشار 2014